1995年,陷俘超冷原子气体玻色爱因斯坦凝聚的发现给玻色凝聚稀薄气体的理论和实验研究都带来了爆炸性的发展。本书提供了详细的超流玻色气体的非平衡态行为和双组分动力学理论。本书利用简单的微观模型,在无碰撞和碰撞为主的区域都给出了清晰明了的集体模式。
《有限温度玻色凝聚气体(英文影印版)》适合超冷原子物理,原子、分子和光物理,以及凝聚态物理领域的研究者和研究生阅读。
Prefacepageix
1Overviewandintroduction1
1.1HistoricaloverviewofBosesuperfluids9
1.2Summaryofchapters12
2CondensatedynamicsatT=019
2.1Gross-Pitaevskii(GP)equation20
2.2Bogoliubovequationsforcondensatefluctuations28
3Coupledequationsforthecondensate
andthermalcloud32
3.1GeneralizedGPequationforthecondensate33
3.2Boltzmannequationforthenoncondensateatoms39
3.3Solutionsinthermalequilibrium43
3.4RegionofvalidityoftheZNGequations46
4Green'sfunctionsandself-energyapproximations54
4.1OverviewofGreen'sfunctionapproach54
Prefacepageix
1Overviewandintroduction1
1.1HistoricaloverviewofBosesuperfluids9
1.2Summaryofchapters12
2CondensatedynamicsatT=019
2.1Gross-Pitaevskii(GP)equation20
2.2Bogoliubovequationsforcondensatefluctuations28
3Coupledequationsforthecondensate
andthermalcloud32
3.1GeneralizedGPequationforthecondensate33
3.2Boltzmannequationforthenoncondensateatoms39
3.3Solutionsinthermalequilibrium43
3.4RegionofvalidityoftheZNGequations46
4Green'sfunctionsandself-energyapproximations54
4.1OverviewofGreen'sfunctionapproach54
4.2NonequilibriumGreen'sfunctionsinnormalsystems58
4.3Green'sfunctionsinaBose-condensedgas68
4.4Classificationofself-energyapproximations74
4.5Dielectricformalism79
5TheBeliaevandthetime-dependentHFB
approximations81
5.1Hartree-Fock-Bogoliubovself-energies82
5.2Beliaevself-energyapproximation87
5.3Beliaevastime-dependentHFB92
5.4DensityresponseintheBeliaev-Popovapproximation98
6Kadanoff-BaymderivationoftheZNGequations107
6.1Kadanoff-BaymformalismforBosesuperfluids108
6.2Hartree-Fock-Bogoliubovequations111
6.3Derivationofakineticequationwithcollisions115
6.4CollisionintegralsintheHartree-Fockapproximation119
6.5GeneralizedGPequation122
6.6Linearizedcollisionintegralsincollisionlesstheories124
7KineticequationforBogoliubovthermal
excitations129
7.1Generalizedkineticequation130
7.2KineticequationintheBogoliubov-Popovapproximation135
7.3Commentsonimprovedtheory143
8Staticthermalcloudapproximation146
8.1Condensatecollectivemodesatfinitetemperatures147
8.2PhenomenologicalGPequationswithdissipation157
8.3RelationtoPitaevskii'stheoryofsuperfluidrelaxation160
9Vorticesandvortexlatticesatfinitetemperatures164
9.1Rotatingframesofreference:classicaltreatment165
9.2Rotatingframesofreference:quantumtreatment170
9.3Transformationofthekineticequation174
9.4Zaremba-Nikuni-Griffinequationsinarotatingframe176
9.5Stationarystates179
9.6Stationaryvortexstatesatzerotemperature181
9.7Equilibriumvortexstateatfinitetemperatures184
9.8Nonequilibriumvortexstates187
10Dynamicsatfinitetemperaturesusingthe
momentmethod198
10.1BosegasaboveTBEC199
10.2Scissorsoscillationsinatwo-componentsuperfluid204
10.3Themomentofinertiaandsuperfluidresponse220
11NumericalsimulationoftheZNGequations227
11.1ThegeneralizedGross-Pitaevskiiequation228
11.2Collisionlessparticleevolution231
11.3Collisions237
11.4Self-consistentequilibriumproperties248
11.5Equilibriumcollisionrates252
12Simulationofcollectivemodesatfinitetemperature256
12.1Equilibration257
12.2Dipoleoscillations260
12.3Radialbreathingmode263
12.4Scissorsmodeoscillations270
12.5Quadrupolecollectivemodes279
12.6Tran
(加拿大)格里芬(A.Griffin),加拿大多伦多大学教授。