本书强调抽象的向量空间和线性映射,内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等。本书在内容编排和处理方法上与国内通行的做法大不相同,它接近抛开行列式,采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论。书中对一些术语、结论、数学家、证明思想和启示等做了注释,不仅增加了趣味性,还加强了读者对一些概念和思想方法的理解。
本书起点低,无需线性代数方面的预备知识即可学习,很好适合作为教材。另外,本书方法新颖,很好值得相关教师和科研人员参考。
         
         
             
             1 向量空间 1
1.A Rn 与Cn 2
1.B 向量空间的定义 10
1.C 子空间 15
2 有限维向量空间 23
2.A 张成空间与线性无关 24
2.B 基 32
2.C 维数 35
3 线性映射 40
3.A 向量空间的线性映射 41
3.B 零空间与值域 46
3.C 矩阵 55
3.D 可逆性与同构的向量空间 63
3.E 向量空间的积与商 71
3.F 对偶 78
4 多项式 91
5 本征值、本征向量、不变子空间 101
5.A 不变子空间 102
5.B 本征向量与上三角矩阵 109
5.C 本征空间与对角矩阵 118
6 内积空间 124
6.A 内积与范数 125
6.B 规范正交基 136
6.C 正交补与极小化问题 145
7 内积空间上的算子 153
7.A 自伴算子与正规算子 154
7.B 谱定理 163
7.C 正算子与等距同构 169
7.D 极分解与奇异值分解 175
8 复向量空间上的算子 182
8.A 广义本征向量和幂零算子 183
8.B 算子的分解 189
8.C 特征多项式和极小多项式 197
8.D 若尔当形 203
9 实向量空间上的算子 208
9.A 复化 209
9.B 实内积空间上的算子 217
10 迹与行列式 223
10.A 迹 224
10.B 行列式 231
图片来源 251
符号索引 252
索引 253