本书结合著作者在三山岛金矿长期的工程经验,系统的总结了大型海底金矿地质隐患的探测、处理技术及监测技术,可为海底金矿的安全高效开采提供技术支撑,主要内容包括海底资源开采概述、三山岛金矿西南翼矿段工程地质评价及三维模型、应力-渗流耦合作用下的破碎矿岩物理力学特性及本构模型、海底基岩开采隐伏采空区及塌陷区分布、海底破碎矿岩及采空区充填注浆加固技术、基于多源信息融合的破碎矿岩稳定性评价、海底破碎矿岩稳定性多元立体综合监测系统及海底破碎矿岩稳定性监测数据分析。
Chapter 1 Background
Chapter 2 Literature Survey
2.1 Introduction
2.2 Complex pipe systems
2.2.1 Industrial scale circulating fluidized bed (CFB)
2.2.2 Long-distance high-pressure dense-phase (LHD) pneumatic conveying system
2.2.3 Bypass pneumatic conveying system
2.3 Numerical methods
2.3.1 Two fluid model (TFM)
2.3.2 Discrete element method (DEM)
2.3.3 Coupling of DEM and CFD
2.3.4 Coarse-grained (CG) /parcel CFD-DEM approach
2.4 Summary and proposed research
Chapter 3 Simulation of Industrial Scale CFB Using Coarse Grained CFD-DEM Model
3.1 Introduction
3.2 Experiments and simulation conditions
3.2.1 Backgrounds
3.2.2 Experimental set up and measurements
3.2.3 Mathematical model
3.2.4 Simulation conditions
3.3 Results and discussion
3.3.1 Axia] pressure gradient
3.3.2 Solid velocity and concentration
3.3.3 Particle cluster and solids back mixing
3.3.4 Analysis of the interaction forces
3.3.5 Effects of different model particle sizes
3.3.6 Effects of different solid mass flow rate
3.4 Conclusions
Chapter 4 Computational Study of Gas-solid Flow in LHD Pneumatic Conveying Systems
4.1 Introduction
4.2 Mathematical model
4.2.1 TFM
4.2.2 CFD-DEM
4.3 Simulation conditions
4.4 Model validation
4.5 Results and discussion
4.5.1 Pressure drop
4.5.2 Gas velocity
4.5.3 Solid velocity
4.5.4 Forces governing the motion of solids
4.6 Conclusions
Chapter 5 Numerical Study of Gas-solid Flow in Stepped Pipe with Inserts
5.1 Introduction
5.2 Mathematical model
5.2.1 TFM
5.2.2 CFD-DEM
5.3 Simulation conditions
5.4 Results and discussion
5.4.1 Single pipe with inserts
5.4.2 Stepped pipe with inserts
5.4.3 Different shape of inserts
5.5 Conclusions
Chapter 6 Particle-scale Modelling of Gas-solid Flow in Bypass System
6.1 Introduction
6.2 Mathematical model
6.3 Simulation conditions
6.4 Results and discussion
6.4.1 Grid study
6.4.2 Pressure drop
6.4.3 Gas velocity
6.4.4 Solid velocity and general flow pattern
6.4.5 Forces governing particle motion
6.5 Conclusions
Chapter 7 Effects Geometrical Parameters on the Gas-solid Flow in Bypass System
7.1 Introduction
7.2 Simulation method
7.3 Simulation conditions
7.4 Results and discussion
7.4.1 Effect of flute spacing
7.4.2 Effect of small internal pipe diameters
7.4.3 Effect of orifice path diameter
7.5 Conclusions
Chapter 8 Summary and Future Work
8.1 Summary
8.2 Future work
References