本套教程是一部近代理论物理学巨著,是20世纪中期以来最重要、最全面、影响最大的理论物理学教程。原著为俄文,现已有6种语言的全译本和10余种语言的分卷译本,其英译本也已多次重印。本教程由20世纪杰出的理论物理学家、俄罗斯科学院院士Landau和他的学生Lifshitz撰写,于50年代开始陆续出版,后经Lifshitz和Pitaevskii多次修订,成为世界公认的经典著作。本套教程共分10卷,涵盖了近代理论物理学从微观到宏观的全部分支。其特点是取材丰富,论证严谨,推导方法独特。全书给读者以清晰的
From the Preface to the first English edition
Preface to the second English edition
Preface to the third Russian edition
Editor's Preface to the fourth Russian edition
Notation
I.THE BASIC CONCEPTS OF QUANTUM MECHANICS
§1.The uncertainty principle
§2.The principle of superposition
§3.Operators
§4.Addition and multiplication of operators
§5.The continuous spectrum
§6.The passage to the limiting case of classical mechanics
§7.The wave function and measurements
II.ENERGY AND MOMENTUM
§8.The Hamiltonian operator
§9.The differentiation of operators with respect to time
§10.Stationary states
§11.Matrices
§12.Transformation of matrices
§13.The Heisenberg representation of operators
§14.The density matrix
§15.Momentum
§16.Uncertainty relations
III.SCHRODINGER'S EQUATION
§17.Schr?dinger's equation
§18.The fundamental properties of Schr?dinger's equation
§19.The current density
§20.The variational principle
§21.General properties of motion in one dimension
§22.The potential well
§23.The linear oscillator
§24.Motion in a homogeneous field
§25.The transmission coefficient
IV.ANGULAR MOMENTUM
§26.Angular momentum
§27.Eigenvalues of the angular momentum
§28.Eigenfunctions of the angular momentum
§29.Matrix ele ments of vectors
§30.Parity of a state
§31.Addition of angular momenta
V.МотION IN А CENTRALLY SYММЕTRIС РЕLD
§32.Motion in a centrally sym metric field
§33.Spherical waves
§34.Resolution of a plane wave
§35.Fall of a particle to the centre
§36.Motion in a Coulomb field (spherical polar coordinates
§37.Motion in a Coulomb feld (parabolic coordinates)
VI.PERTURBATION THEORY
§38.Perturbations independent of time
§39.The secular equation
§40.Perturbations depending on time
§41.Transitions under a perturbation acting for a finite time
§42.Transitions under the action of a periodic perturbation
§43.Transitions in the continuous spectrum
§44.The uncertainty relation for energy
§45.Potential energy as a perturbation
VII.THE QUASI-CLASSICAL CASE
§46.The wave function in the quasi-classical case
§47.Boundary conditions in the quasi-classical case
§48.Bohr and Sommerfeld's quantization rule
§49.Quasi-classical motion in a centrally symmetric field
§50.Penetration through a potential barrier
§51.Calculation of the quasi-classical matrix elemente
§52.The transition probability in the quasi-classical case
§53.Transitions under the action of adiabatic perturbations
VIII.SPIN
§54.Spin
§55.The spin operator
§56.Spinors
§57.The wave functions of particles with arbitrary spin
§58.The operator of finite rotations
§59.Partial polarization of particles
§60.Time reversal and Kramers'theorem
IX.IDENTITY OF PARTICLES
§61.The principle of indistinguishability of similar particles
§62.Exchange interaction
§63.Symmetry with respect to interchange
§64.Second quantization.The case of Bose statistics
§65.Second quantization.T he case of Fermi statistics
X.THE ATOM
§66.Atomic energy levels
§67.Electron states in the atom
§68.Hydrogen-like energy leyels
§69.The self-consistent feld
§70.The Thomas-Fermi equation
§71.Wave functions of the outer electrons near the nucleus
§72.Fine structure of atomic levels
§73.The Mendeleev periodic system
§74.X-ray terms
§75.Multipole moments
§76.An ato m in an electric field
§77.A hydrogen atom in an electric field
XI.ТНЕ DATоMIC MOLECULE
§78.Electron terms in the diatomic molecule
§79.The intersection of electron terms
§80.The relation between molecular and atomic terms
§81.Valency
§82.Vibrational and rotational structures of singlet terma in the diatomic molecule
§83.Multiplet terms.Case a
§84.Multiplet terms.Case b
§85.Multiplet terms.Cases c and d
……