本书详细介绍地球物理反演的正则化求解方法及该方法在线性和非线性地球物理反演中不同形式的应用,是原著作者在地球物理反演及应用方面的研究成果,反映了当今国际上地球物理反演的前沿问题。
译者序
Introduction to Chinese Edition
再版前言
前言
第一部分 反演理论介绍
第1章 科学与工程领域中的正反演问题 3
1.1 不同地球物理场的正反演问题公式化 3
1.1.1 重力场 6
1.1.2 磁场 7
1.1.3 电磁场 8
1.1.4 地震波场 11
1.2 反演解的存在性与唯一性 13
1.2.1 解的存在性 13
1.2.2 解的唯一性 13
1.2.3 实际唯一性 17
1.3 反演解的不稳定性 18
参考文献 20
第2章 不适定问题及相关解法 22
2.1 地球物理学研究方法中的灵敏度与分辨率 22
2.1.1 反演问题中一般数学空间的公式 22
2.1.2 灵敏度 23
2.1.3 分辨率 23
2.2 适定与不适定问题的公式化 24
2.2.1 适定问题 24
2.2.2 有条件的适定问题 25
2.2.3 不适定问题的拟解 26
2.3 反演解正则化方法的基础 27
2.3.1 比较运算符 27
2.3.2 稳定泛函 29
2.3.3 吉洪诺夫参数泛函 31
2.4 稳定泛函族 33
2.4.1 回顾稳定泛函 33
2.4.2 伪二次函数形式下稳定泛函的表现形式 37
2.5 正则化参数的定义 39
2.5.1 最优正则化参数选择 39
2.5.2 正则化参数选取的L曲线法 41
参考文献 41
第二部分 反演问题的求解方法
第3章 离散线性反问题 45
3.1 线性最小二乘反问题 45
3.1.1 离散线性反问题 45
3.1.2 线性系统及其通解 46
3.1.3 数据分辨矩阵 47
3.2 纯欠定问题的解 48
3.2.1 欠定线性方程组 48
3.2.2 模型分辨矩阵 49
3.3 加权最小二乘法 50
3.4 概率论在线性反问题中的应用 51
3.4.1 概率论基础 51
3.4.2 最大似然估计法 52
3.4.3 χ2拟合 54
3.5 正则化方法 55
3.5.1 吉洪诺夫正则化 55
3.5.2 兰乔斯谱分解方法在求解正则化线性反问题中的应用 56
3.5.3 综合灵敏度 57
3.5.4 模型参数和数据的权矩阵 58
3.5.5 可控灵敏度 59
3.5.6 线性反问题的正则化逼近解 60
3.5.7 利文贝格-马奎特法 61
3.5.8 后验估计极大值方法(贝叶斯估计) 62
3.6 贝克斯-吉尔伯特方法 64
3.6.1 数据分辨矩阵 64
3.6.2 扩散函数 66
3.6.3 贝克斯-吉尔伯特方法的正则化解 67
参考文献 68
第4章 线性反问题的迭代解法 70
4.1 线性算子方程组及其迭代解法 70
4.1.1 线性反问题和欧拉方程 70
4.1.2 最小残差法 71
4.1.3 线性反问题的最小残差解 76
4.2 广义最小残差法 78
4.2.1 克雷洛夫子空间算法 78
4.2.2 兰乔斯最小残差方法 79
4.2.3 广义最小残差法 83
4.2.4 用广义最小残差方法解线性反问题 86
4.3 线性反问题中的正则化方法 87
4.3.1 吉洪诺夫参数化泛函的欧拉方程 87
4.3.2 欧拉方程的最小残差解 88
4.3.3 参数化泛函欧拉方程的广义最小残差解法 90
参考文献 92
第5章 非线性反演技术 93
5.1 梯度法 93
5.1.1 最速下降法 93
5.1.2 牛顿法 100
5.1.3 共轭梯度法 104
5.2 非线性反演问题中的正则化梯度法 108
5.2.1 正则化的最速下降法 108
5.2.2 正则化牛顿法 110