《计算物理学》(第2版)是一部很好规范的高等计算物理教科书。内容包括用于计算物理学中的重要算法的简洁描述。本书靠前部分介绍数值方法的基本理论,其中包含大量的习题和仿真实验。本书第2部分主要聚焦经典和量子系统的仿真等内容。读者对象:计算物理等相关专业的研究生。
Part Ⅰ Numerical Methods
1 Error Analysis
1.1 Machine Numbers and Rounding Errors
1.2 Numerical Errors of Elementary Floating Point Operations
1.2.1 Numerical Extinction
1.2.2 Addition
1.2.3 Multiplication
1.3 Error Propagation
1.4 Stability of Iterative Algorithms
1.5 Example: Rotation
1.6 Truncation Error
1.7 Problems
2 Interpolation
2.1 Interpolating Functions
2.2 Polynomial Interpolation
2.2.1 Lagrange Polynomials
2.2.2 Barycentric Lagrange Interpolation
2.2.3 Newton's Divided Differences
2.2.4 Neville Method
2.2.5 Error of Polynomial Interpolation
2.3 Spline Interpolation
2.4 Rational Imerpolation
2.4.1 Pade Approximant
2.4.2 Barycentric Rational Interpolation
2.5 Multivariate Interpolation
2.6 Problems
3 Numerical Differentiahon
3.1 One—Sided Difference Quotient
3.2 Central Difference Quotient
3.3 Extrapolation Methods
3.4 Higher Derivatives
3.5 Partial Derivatives of Multivariate Functions
3.6 Problems
4 Numerical Integrahon
4.1 Equidistant Sample Points
4.1.1 Closed Newton—Cotes Formulae
4.1.2 Open Newton—Cotes Formulae
4.1.3 Composite Newton—Cotes Rules
4.1.4 Extrapolation Method (Romberg Integration)
4.2 Optimized Sample Points
4.2.1 Clenshaw—Curtis Expressions
4.2.2 Gaussian Integration
4.3 Problems
5 Systems of Inhomogeneous Linear Equations
5.1 Gaussian Elimination Method
5.1.1 Pivoting
5.1.2 Direct LU Decomposition
5.2 QR Decomposition
5.2.1 QR Decomposition by Orthogonalization
5.2.2 QR Decomposition hy Householder Reflections
5.3 Linear Equations wiih Tridiagonal Matrix
5.4 Cyclic Tridiagonal Systems
5.5 Iterative Solution of Inhomogeneous Linear Equations
5.5.1 General Relaxation Method
5.5.2 Jacobi Method
5.5.3 Gauss—Seidel Method
5.5.4 Damping and Successive Over—Relaxation
5.6 Conjugate Gradients
5.7 Matrix Inversion
5.8 Problems
6 Roots and Extremal Points
6.1 Root Finding
6.1.1 Bisection
6.1.2 Regula Falsi (False Position) Method
6.1.3 Newton—Raphson Method
6.1.4 Secant Method
6.1.5 Interpolation
6.1.6 Inverse Interpolation
6.1.7 Combined Methods
6.1.8 Multidimensional Root Finding
6.1.9 Quasi—Newton Methods
6.2 Function Minimization
6.2.1 TheTernary Search Method
6.2.2 The Golden Section Search Method (Brent's Method)
6.2.3 Minimization in Multidimensions
6.2.4 Steepest Descent Method
6.2.5 Conjugate Gradient Method
6.2.6 Newton—Raphson Method
6.2.7 Quasi—Newton Methods
6.3 Problems
Fourier Transformation
7.1 Fourier Integral and Fourier Series
7.2 Discrete Fourier Transformauon
7.2.1 Trigonometric Interpolation
7.2.2 Real Valued Functions
7.2.3 Approximate Continuous Fourier Transformation
暂无